IMPROVED SYNTHESIS OF Te (AsF) 4, and TeF 3. AsF 6

Ramesh Kapoor*, Michael P. Murchie and Jack Passmore

Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick, E3B 6E2 (Canada).

Te + 3 AsF₅
$$\xrightarrow{\text{traces of Br}_2}$$
 $\xrightarrow{\text{SO}_2, \text{ r.t.}}$ TeF₃.AsF₆ + 2 AsF₃ (2)

Original preparation of $\mathrm{Te}_6(\mathrm{AsF}_6)_4^{-1}$ involved the reaction of elemental tellurium with excess AsF_5 for several days followed by a tedius and not totally complete separation from $\mathrm{Te}_4(\mathrm{AsF}_6)_2$. The present method involves the oxidation of tellurium with AsF_5 in the presence of traces of Br_2 in SO_2 at r.t. (eq. 1). The sparingly soluble $\mathrm{Te}_6(\mathrm{AsF}_6)_4$ is easily separated from other side products, TeF_4 and $\mathrm{TeF}_3.\mathrm{AsF}_6$ as they are highly soluble in SO_2 . $\mathrm{TeF}_3.\mathrm{AsF}_6$ was detected by NMR in the solutions of TeF_4 and excess AsF_5 in SO_2^{-2} . The present preparation of $\mathrm{TeF}_3\mathrm{AsF}_6$ (eq. 2) is effected in a simple one step, without the prior preparation of TeF_4 , which is prepared by the reaction of TeO_2 and SF_4 at high pressure³. The method has been extented (eq. 3) to give TeF_4 but needs careful removal of traces of $\mathrm{TeF}_3.\mathrm{AsF}_6$.

Te + 2 AsF₅
$$\xrightarrow{\text{traces of Br}_2}$$
 TeF₄ + 2 AsF₃ (3)

R.C.Burns, R.J.Gillespie, W.C.Luk, and D.R.Slim, <u>Inorg. Chem.</u> 18, 3086 (1979).

^{2.} M.J.Collins and G.J.Schrobilgen, <u>Inorg. Chem.</u> 24, 2608 (1985).

^{3.} K.Seppelt, <u>Inorq. Synth.</u> 20, 33 (1980).

^{*} Department of Chemistry, Panjab University, Chandigarh, India.